精英家教网 > 高中数学 > 题目详情
用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为
1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2
1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2
分析:数学归纳法证明n=k+1的待证表达式,可以利用n=k时的表达式写出即可.
解答:解:因为证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2
则当n=k+1时,待证表达式应为:
1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2
故答案为:1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2
点评:本题考查数学归纳法的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:函数f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求证:函数f(x)的图象关于点A(1,
4
3
)
中心对称,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)设g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求证:
(ⅰ)请用数学归纳法证明:当n≥2时,1<an
3
2

(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在观察正整数的前n项平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*时发现它的和为关于n的三次函数,于是他猜想:是否存在常数a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.对于一切n∈N*都立?
(1)若n=1,2 时猜想成立,求实数a,b的值.
(2)若该同学的猜想成立,请你用数学归纳法证明.若不成立,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省东北育才学校高二下学期期中考试文科数学 题型:解答题

(本小题满分12分)

关于的函数与数列具有关系:, (为常数),

(=1,2,3,…),又已知函数的导数为方程的实根.

(I)用数学归纳法证明:

(II)证明:.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省高二下学期期中考试理科数学 题型:解答题

(本小题满分12分)

关于的函数与数列具有关系:

,(=1,2,3,…)(为常数),又设函数的导数为方程的实根.

(I)用数学归纳法证明:

(II)证明:.

 

查看答案和解析>>

同步练习册答案