精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.

(1)g(x)=x2-lnx(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的最大值;
(2)求证:恒成立;
(3)求证:.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-ax-1.
(1)若a=3时,求f(x)的单调区间;
(2)若f(x)在实数集R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函数f(x)的极大值;
(2)若x=1是函数f(x)的一个极值点.
①试用a表示b;
②设a>0,函数g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=a2ln xx2axa>0.
①求f(x)的单调区间;②求所有实数a,使e-1≤f(x)≤e2x∈[1,e]恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)当m=时,求函数f(x)在区间[1,3]上的极小值;
(2)求证:函数f(x)存在单调递减区间[a,b];
(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,曲线yf(x)在点(1,f(1))处的切线方程为x+2y-3=0.求ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数f(x)=ax3x2x-5在(-∞,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.

查看答案和解析>>

同步练习册答案