精英家教网 > 高中数学 > 题目详情

(本大题12分)
已知函数函数的图象与的图象关于直线对称,
(Ⅰ)当时,若对均有成立,求实数的取值范围;
(Ⅱ)设的图象与的图象和的图象均相切,切点分别为,其中
(1)求证:
(2)若当时,关于的不等式恒成立,求实数的取值范围.

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(14分)设函数.
(1)当时,求的极值;
(2)当时,求的单调区间;
(3)若对任意,恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数= 是自然对数的底)
(1)若函数是(1,+∞)上的增函数,求的取值范围;
(2)若对任意的>0,都有,求满足条件的最大整数的值;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分 )已知函数
(1)求函数的最大值;
(2)若,不等式恒成立,求实数的取值范围;
(3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数()  
(1)求函数的单调递减区间;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n ,不等式都成立.

查看答案和解析>>

同步练习册答案