精英家教网 > 高中数学 > 题目详情

已知函数,其中
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值和最小值.

(I);(II)详见解析.

解析试题分析:(I)求出导数即切线斜率,代入点斜式;(II)列表,依据参数分情况讨论,求最值.
试题解析:(Ⅰ)解:的定义域为, 且 .             2分
时,
所以曲线在点处的切线方程为
.                                              4分
(Ⅱ)解:方程的判别式为
(ⅰ)当时,,所以在区间上单调递增,所以在区间
上的最小值是;最大值是.                    6分
(ⅱ)当时,令,得 ,或.                    
的情况如下:














练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值,求函数上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ)若函数上单调递减,在区间单调递增,求的值;
(Ⅱ)若函数上有两个不同的极值点,求的取值范围;
(Ⅲ)若方程有且只有三个不同的实根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数   
(Ⅰ)若时有极值,求实数的值和的单调区间;
(Ⅱ)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,函数取得极大值,求实数的值;
(Ⅱ)已知结论:若函数在区间内存在导数,则存在
,使得. 试用这个结论证明:若函数
(其中),则对任意,都有
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都
.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 
(1)求函数的单调区间;
(2)若函数上是减函数,求实数的最小值;
(3)若,使成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)已知对定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若对于区间上任意两个自变量的值,都有,求实数的最小值;
(Ⅲ)若过点,可作曲线的三条切线,求实数 的取值范围.

查看答案和解析>>

同步练习册答案