精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x2-2alnx(a∈R),g(x)=2ax.
(1)求函数f(x)的极值;
(2)若a>0,函数h(x)=f(x)-g(x)有且只有一个零点,求实数a的值;
(3)若0<a<1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范围.

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而判断函数的极值问题;
(2)求出h(x)的导数,求出h(x)的单调区间,求出极小值,得到函数m(x)=2lnx+x-1,根据函数的单调性求出a的值即可;
(3)问题转化为h(x)在[1,2]递增,求出函数的导数,分离参数得到a≤$\frac{{x}^{2}}{x+1}$在[1,2]恒成立,令t=x+1∈[2,3],从而求出a的范围即可.

解答 解:(1)f′(x)=$\frac{{2x}^{2}-2a}{x}$,
当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,f(x)无极值,
当a>0时,x∈(0,$\sqrt{a}$)时,f′(x)<0,f(x)递减,
x∈($\sqrt{a}$,+∞)时,f′(x)>0,f(x)递增,
∴f(x)有极小值f($\sqrt{a}$)=a-alna,
综上:a≤0时,f(x)无极值,
a>0时,f(x)极小值=a-alna,无极大值;
(2)令h(x)=x2-2alnx-2ax,则h′(x)=$\frac{{2x}^{2}-2ax-2a}{x}$,
∵a>0,令h′(x)=0,解得x0=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$,
∴h(x)在(0,$\frac{a+\sqrt{{a}^{2}+4a}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}+4a}}{2}$,+∞)递增,
∴h(x)在x0处取得极小值h(x0)=0,
∴${{x}_{0}}^{2}$-2alnx0-2ax0=0且2${{x}_{0}}^{2}$-2ax0-2a=0,
联立可得:2lnx0+x0-1=0,
令m(x)=2lnx+x-1得m′(x)=$\frac{2}{x}$+1>0,
故m(x)在(0,+∞)递增又m(1)=0,x0=1,
即$\frac{a+\sqrt{{a}^{2}+4a}}{2}$=1,解得:a=$\frac{1}{2}$;
(3)不妨令1≤x1<x2≤2,
则由(1)得f(x1)<f(x2
∴|f(x1)-f(x2)|>|g(x1)-g(x2
?f(x2)-f(x1)>g(x2)-g(x1
?f(x2)-g(x2)>f(x1)-g(x1),
则h(x)在[1,2]递增,
∴h′(x)=$\frac{{2x}^{2}-2ax-2a}{x}$≥0在[1,2]恒成立,
即2x2-2ax-2a≥0在[1,2]恒成立,
∴a≤$\frac{{x}^{2}}{x+1}$在[1,2]恒成立,
令t=x+1∈[2,3],则$\frac{{x}^{2}}{x+1}$=t+$\frac{1}{t}$-2≥$\frac{1}{2}$,
∴0<a≤$\frac{1}{2}$,
∴a的范围是(0,$\frac{1}{2}$].

点评 本题考查了函数的单调性、最值、极值问题,考查导数的应用以及函数恒成立问题,函数的零点问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{AB}$=(3,1),向量$\overrightarrow{a}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{AB}$,则实数λ的值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{2}$xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.
(1)求BD的长;
(2)求△ABD的外接圆半径R;
(3)求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域为[-1,1],求函数y=f(x+$\frac{1}{2}$)•f(x-$\frac{1}{2}$)的定义域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:tanα=2,求值:①tan(α-$\frac{π}{4}$);②sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=Asin(ωx+φ)(A>0,x∈R,ω>0,0≤φ<π)的部分图象如图所示,则A=1,ω=$\frac{π}{4}$,φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有(  )
A.30B.32C.34D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4.E为BC的中点,F为CC1的中点.
(1)求EF与平面ABCD所成的角的余弦值;
(2)求二面角F-DE-C的余弦值.

查看答案和解析>>

同步练习册答案