精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是边长为2的正方形, ,且 中点.

(Ⅰ)求证: 平面;  

求二面角的平面角的余弦.

【答案】(1)见解析,(2) 二面角的大小为.

【解析】试题分析(1)由题意及正方形的特点,利用BC⊥AB,BC⊥PB得到BC平面PAB,进而得到BCPA,在利用CDPA,得到线面垂直;

(2)由题意及图形,利用三垂线定理得到二面角的平面角,并在三角形中解出即可;

(Ⅰ)证明:∵底面为正方形, ∴,又, ∴平面,∴. 同理平面

(Ⅱ)解:设中点,连结,又中点,可得,从而底面.过 的垂线,垂足为,连结. 由三垂线定理有

为二面角的平面角. 在中,可求得

. cosEMN= ∴ 二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知pq为常数, ),又 .

1)求pq的值;

2)求数列的通项公式;

3)是否存在正整数mn,使成立?若存在,求出所有符合条件的有序实数对;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为

1)求侧面PAD与底面ABCD所成的二面角的大小;

2)若EPB的中点,求异面直线PDAE所成角的正切值;

3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点

(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端

时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;

(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲

乙之间的距离表示为θ的函数,并求甲乙之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,则△ABC的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船以每小时 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距 海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为An , 求证:对任意正整数n,都有An 成立;
(3)数列{bn}满足bn=( nan , 它的前n项和为Tn , 若存在正整数n,使得不等式(﹣2)n1λ<Tn+ ﹣2n1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},满足a1=1, ,n∈N* . (Ⅰ)求证:数列 为等差数列;
(Ⅱ)设 ,求T2n

查看答案和解析>>

同步练习册答案