精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1 , CD的中点,求证:平面ADE⊥平面A1FD1

【答案】证明:因为ABCD﹣A1B1C1D1是正方体,

所以AD⊥平面DCC1D1

又D1F平面DCC1D1,所以AD⊥D1F,

取AB中点G,

连接A1G、FG,因为F为CD中点,

所以FG AD A1D1,所以A1G∥D1F,

因为E是BB1中点,所以Rt△A1AG≌Rt△ABE,

所以∠AA1G=∠HAG,∠AHA1=90°,

即A1G⊥AE,所以D1F⊥AE,因为AD∩AE=A,

所以D1F⊥平面ADE,

所以D1F平面A1FD1

所以平面A1FD1⊥平面ADE.


【解析】由已知得AD⊥平面DCC1D1,从而AD⊥D1F,取AB中点G,由已知条件推导出A1G⊥AE,从而D1F⊥AE,进而D1F⊥平面ADE,由此能证明平面A1FD1⊥平面ADE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4 ,P(x,y)在双曲线上,M( ),则|PM|+|PF2|的最小值为(
A. ﹣1
B.2
C.2 ﹣2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知( +3x2n的展开式中,各项系数的和与其各项二项式系数的和之比为32.
(1)求n;
(2)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x、y满足2x+y=9.
(1)若|8﹣y|≤x+3,求x的取值范围;
(2)若x>0,y>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1 =z2
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,若a2+2,a4+4,a6+6构成等比数列,这数列{an}的公差d等于(
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

同步练习册答案