精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的导函数,若f(α)=0,f'(α)>0,且f(x)在区间[α,$\frac{π}{2}$+α)上没有最小值,则ω取值范围是(  )
A.(0,2)B.(0,3]C.(2,3]D.(2,+∞)

分析 由题意,$\frac{T}{2}$<$\frac{π}{2}$≤$\frac{3}{4}$T,即可得出结论.

解答 解:由题意,f(α)=0,f'(α)>0,
且f(x)在区间[α,$\frac{π}{2}$+α)上没有最小值,
∴$\frac{T}{2}$<$\frac{π}{2}$≤$\frac{3}{4}$T,
∴$\frac{π}{ω}$<$\frac{π}{2}$≤$\frac{3}{4}$•$\frac{2π}{ω}$,
∴2<ω≤3,
故选C.

点评 本题考查导数知识的运用,考查函数的周期性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设α、β分别是方程log2x+x-3=0和2x+x-3=0的根,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列选项中,说法正确的是(  )
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.命题“若$\overrightarrow{a}$=-$\overrightarrow{b}$,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|”的否命题是真命题
C.x=1是$x-1=\sqrt{x-1}$的必要不充分条件
D.ab>1是a>1且b>1的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin(α+$\frac{π}{3}$)=$\frac{1}{3}$,则cos($\frac{π}{6}$-α)=$\frac{1}{3}$; cos($\frac{π}{3}$-2α)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$f(x)=\left\{\begin{array}{l}sinπx,x≥0\\ cos({\frac{πx}{2}+\frac{π}{3}}),x<0\end{array}\right.$则$f(f(\frac{15}{2}))$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=x2+2mx+(2m+1).
(1)若f(x)=0得两根分别为某三角形两内角的正弦值,求m的取值范围;
(2)问是否存在实数m,使得f(x)=0的两根是直角三角形两个锐角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f'(x0)=a,则$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$的值为(  )
A.-2aB.2aC.aD.-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z满足(2-3i)z=3+2i(i为虚数单位),则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a2>1”是“a3>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案