精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在(0,+∞)上的函数,对任意m>0,n>0,都有f(m﹒n)=f(m)+f(n)-2,且当x>1时,f(x)>2,设f(x)在[
110
,10]上的最大值为P,最小值为Q,则P+Q=
4
4
分析:令n=1证出f(1)=2,从而得到f(m)+f(
1
m
)=4,由此根据函数单调性的定义,结合当x>1时f(x)>2证出f(x)是定义在(0,+∞)上的增函数.从而得到f(x)在[
1
10
,10]上的最大、最小值分别为f(
1
10
)和f(10),由此结合f(m)+f(
1
m
)=4即可得到P+Q的值.
解答:解:令n=1,得f(m﹒1)=f(m)+f(1)-2
∴f(m)=f(m)+f(1)-2,可得f(1)=2
令n=
1
m
,得f(1)=f(m•
1
m
)=f(m)+f(
1
m
)-2=2,
∴f(m)+f(
1
m
)=4,…(*)
可得f(
1
m
)=4-f(m)
当0<x1<x2时,
x2
x1
>1

∴f(
x2
x1
)=f(x2
1
x1
)=f(x2)+f(
1
x1
)-2>2
∵f(
1
x1
)=4-f(x1
∴代入上式,可得f(x2)+(4-f(x1))-2>2,得f(x2)-f(x1)>0
因此f(x1)<f(x2),可得f(x)是定义在(0,+∞)上的增函数
∴f(x)在[
1
10
,10]上的最大值为P=f(
1
10
),最小值为Q=f(10)
由(*)得f(
1
10
)+f(10)=4,可得P+Q=4
点评:本题给出抽象函数,求f(x)在[
1
10
,10]上的最大、最小值的和.着重考查了函数单调性的证明、用赋值法求抽象函数的值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案