【题目】为了解使用手机是否对学生的学习有影响,某校随机抽取100名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):
使用手机 | 不使用手机 | 总计 | |
学习成绩优秀 | 10 | 40 | |
学习成绩一般 | 30 | ||
总计 | 100 |
(1)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;
(2)现从上表中不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,再从这6人中随机抽取3人,求其中学习成绩优秀的学生恰有2人的概率.
参考公式:,其中.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)表格见解析,有99.9%的把握认为学生的学习成绩与使用手机有关,(2)
【解析】
(1)先根据表格数据关系逐一填写,再根据卡方公式求卡方,最后根据参考数据作判断;
(2)先根据分层抽样确定各层抽取人数,再根据古典概型概率公式求结果.
(1)
使用手机 | 不使用手机 | 总计 | |
学习成绩优秀 | 10 | 40 | 50 |
学习成绩一般 | 30 | 20 | 50 |
总计 | 40 | 60 | 100 |
所以有99.9%的把握认为学生的学习成绩与使用手机有关
(2)从上表中不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,
其中学习成绩优秀4人,学习成绩一般2人,
从这6人中随机抽取3人,有种取法,
其中学习成绩优秀的学生恰有2人有种取法,
因此所求概率为
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)求曲线的直角坐标系方程和直线的普通方程;
(2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求的方程;
(2)设为的左焦点,为直线上任意一点,过点作的垂线交于两点,.
(i)证明:平分线段(其中为坐标原点);
(ii)当取最小值时,求点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的四个顶点围成的四边形的面积为,其离心率为
(1)求椭圆的方程;
(2)过椭圆的右焦点作直线(轴除外)与椭圆交于不同的两点,,在轴上是否存在定点,使为定值?若存在,求出定点坐标及定值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形与均为菱形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式及数据:K2=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面推理过程中使用了类比推理方法,其中推理正确的是( )
A. 平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则
B. 平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则
C. 在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为
D. 若,则复数.类比推理:“若,则”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com