精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=1.
(I)若直线l过点 A(4,0),且被圆C1截得的弦长为2$\sqrt{3}$,求直线l的方程;
(II)若从圆C1的圆心发出一束光线经直线x-y-3=0反射后,反射线与圆C2有公共点,试求反射线所在直线的斜率的范围.

分析 (I)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2$\sqrt{3}$,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.
(II)圆C1的圆心(-3,1)经直线x-y-3=0对称后的点记为 A(4,-6),直线与圆C2有公共点即直线与圆相交或相切,故利用点到直线的距离公式列出关于k的不等式,即可求反射线所在直线的斜率的范围.

解答 解:(I)由于直线x=4与圆C1不相交;
∴直线l的斜率存在,设l方程为:y=k(x-4)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2$\sqrt{3}$
∴d=1
∴d=$\frac{|-1-7k|}{\sqrt{1+{k}^{2}}}$=1,从而k(24k+7)=0即k=0或k=-$\frac{7}{24}$
∴直线l的方程为:y=0或$y=-\frac{7}{24}({x-4})$,即y=0或7x+24y-28=0.
(II)圆C1的圆心(-3,1)经直线x-y-3=0对称后的点记为 A(4,-6),
设反射光线所在的直线的斜率为k,则反射光线所在的直线方程为y+6=k(x-4)⇒kx-y-4k-6=0.
圆C2的圆心(4,5).
直线与圆C2有公共点即直线与圆相交或相切,则$d=\frac{{|{4k-5-4k-6}|}}{{\sqrt{{k^2}+1}}}≤1$⇒$\sqrt{{k^2}+1}≥11$
⇒k2≥120⇒$k≤-2\sqrt{30}$或$k≥2\sqrt{30}$.

点评 此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,两直线垂直时斜率满足的关系,关于坐标轴对称的点的特点,切线的性质.解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k,直线与圆联立消去y后得到一个关于x的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{x^2}{13}+\frac{y^2}{4}=1$的焦点为F1,F2,点P是椭圆上的动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是$(-\frac{{\sqrt{65}}}{3},\frac{{\sqrt{65}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则A∩B=(  )
A.{x|0<x<1}B.{x|$\frac{1}{2}$<x≤1}C.{x|x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合 A={1,2,4},B={a,3,5},若 A∩B={4},则 A∪B=(  )
A.{4}B.{1,2,4,5}C.{1,2,3,4,5}D.{a,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x),是它的导函数,且恒有sinx•f′(x)>cosx•f(x)成立,则(  )
A.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)B.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sinx+$\frac{3\sqrt{3}}{π}$x+m,x∈[-$\frac{π}{3}$,$\frac{π}{3}$]有零点,则m的取值范围是(  )
A.[2$\sqrt{3}$,+∞)B.(-∞,2$\sqrt{3}$]C.(-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞)D.[-2$\sqrt{3}$,2$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn=(n+1)2-an-2(n∈N*).
(1)令bn+2=an+1-an,证明:{bn}为常数数列,并求出{an}的通项公式;
(2)是否存在m∈N*,使得等式am+am+1+am+2=am•am+1•am+2?若存在,求出对应的m;若不存在,请说明理由.
(3)若ar,as,at为数列{an}中的任意三项,证明:关于x的一元二次方程arx2+asx-at=0无有理数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{lnx+a{x}^{2}}{x}$(a是常数)在x=1处切线的斜率等于1.
(1)求函数f(x)的单调区间并比较f(2),f(3),f(4)的大小;
(2)若方程lnx=x3-2ex2+mx(e为自然对数的底数)有且只有一个实根,求实数m的取值;
(3)如果方程f(x)=lnx-kx有两个不同的零点x1,x2,求证x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
A.平行于同一条直线的两个平面平行或相交
B.平行于同一个平面的两个平面平行
C.平行于同一条直线的两条直线平行
D.平行于同一个平面的两条直线平行或相交

查看答案和解析>>

同步练习册答案