分析 设直线AB的参数方程,可得A,B的坐标,把直线AB的方程代入椭圆的方程,得到根与系数的关系,可得$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$=$\frac{1}{{{t}_{1}}^{2}}$+$\frac{1}{{{t}_{2}}^{2}}$=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-6)^{2}}$,由于$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值m,因此24-8x02=0,解出即可.
解答 解:设直线AB的方程为$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y=tsinα}\end{array}\right.$,
A(x0+t1cosα,t1sinα),B(x0+t2cosα,t2sinα).
把直线AB的方程代入椭圆的方程x2+3y2=6,
化为(1+2sin2α)t2+2x0tcosα+x02-6=0.
∴t1+t2=-$\frac{2{x}_{0}cosα}{1+2si{n}^{2}α}$,t1t2=$\frac{{{x}_{0}}^{2}-6}{1+2si{n}^{2}α}$.
∴t12+t22=(t1+t2)2-2t1t2=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{(1+2si{n}^{2}α)^{2}}$,
∴$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$=$\frac{1}{{{t}_{1}}^{2}}$+$\frac{1}{{{t}_{2}}^{2}}$=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-6)^{2}}$,
∵$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值,
∴24-8x02=0,又x0>0.
解得x0=$\sqrt{3}$,m=$\frac{6+12}{9}$=2.
故答案为:$\sqrt{3}$,2.
点评 本题考查了直线与椭圆相交定值问题转化为方程联立得到根与系数的关系、直线的参数方程及其参数的意义,考查了推理能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [-1,0] | B. | {-1,1} | C. | {-1,0,1} | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=(x-1)2 | B. | f(x)=2-x | C. | y=log0.5(x+1) | D. | $y=\sqrt{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com