精英家教网 > 高中数学 > 题目详情

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.求函数f(x)的单调区间和极值.

详见解析.

解析试题分析:(1)先求导数fˊ(x),求出f′(x)=0的值,然后讨论a=1与a>1两种情形,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,从而的函数f(x)的单调区间;(2)讨论a=1与a>1两种情形,根据(1)可知f′(x)=0的点附近的导数的符号的变化情况,从而的函数f(x)的极值.
由已知得f(x)=6x[x-(a-1)],令f(x)=0,解得 x1=0,x2=a-1,.
(1)当a=1时,f(x)=6x2,f(x)在(-∞,+∞)上单调递增
当a>1时,f(x)=6x[x-(a-1)],f(x),f(x)随x的变化情况如下表:

x
(-∞,0)
0
(0,a-1)
a-1
(a-1,+∞)
f?(x)

0

0

f(x)

极大值

极小值

 
从上表可知,函数f(x)在(-∞,0)上单调递增;在(0,a-1)上单调递减;在(a-1,+∞)上单调递增.
(2)由(1)知,当a=1时,函数f(x)没有极值.;当a>1时,函数f(x)在x=0处取得极大值,在x=a-1处取得极小值1-(a-1)3
考点:利用导数研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在点处与直线相切,求a,b的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(1)求的解析式;
(2)设,求证:当时,且恒成立;
(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当 时,求处的切线方程;
(2)设函数
(ⅰ)若函数有且仅有一个零点时,求的值;
(ⅱ)在(ⅰ)的条件下,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数,当时,讨论的单调性;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

查看答案和解析>>

同步练习册答案