精英家教网 > 高中数学 > 题目详情
已知tan(
π
4
+α)=
1
3

求值:(1)tanα;
(2)
cosα-sinα
2
cos(α-
π
4
)
分析:(1)由于α=(
π
4
+α)-
π
4
,可利用两角差的正切公式求得tanα;
(2)利用辅助角公式与三角函数关系式,可将
cosα-sinα
2
cos(α-
π
4
)
化为:tan(
π
4
),从而可求得其值.
解答:解:(1)∵tan(
π
4
+α)=
1
3
α=(
π
4
+α)-
π
4
∴tanα=tan[(
π
4
+α)-
π
4
]=
1
3
-1
1+
1
3
=-
1
2

(2)∵tanα=-
1
2
cosα-sinα
2
cos(α-
π
4
)
=
2
cos(α+
π
4
)
2
cos(α-
π
4
)
=
sin(
π
4
-α)
cos(
π
4
-α)
=tan(
π
4
-α)
=
1-tanα
1+tanα
=3.
点评:本题考查三角函数的恒等变换及化简求值,关键在于将角α结合题意转化为(
π
4
+α)-
π
4
,从而提高解题效率,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(x+
π4
)=2
,则tan2x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将形如
.
а11а12
а21а22
.
的符号称二阶行列式,现规定
.
а11а12
а21а22
.
=a11a22-a12a21
试计算二阶行列式
.
cos
π
4
      1
1cos
π
3
.
的值;
(2)已知tan(
π
4
+a)=-
1
2
,求
sin2a-2cos2a
1+tana

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,则tan(
π
4
-α)的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=
1
2
,则
sin2α-cos2α
1+cos2α
的值为
-
5
6
-
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知tan(α+
π
4
)=2,则tanα=(  )

查看答案和解析>>

同步练习册答案