精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足$\left\{\begin{array}{l}{(x+y-2)(y-2)≤0}\\{0≤x≤1}\end{array}\right.$,则y-x的取值范围是[0,2].

分析 由约束条件作出可行域,令z=y-x,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{(x+y-2)(y-2)≤0}\\{0≤x≤1}\end{array}\right.$作出可行域如图,

令z=y-x,可得y=x+z,
由图可知,当直线y=x+z过A(1,1)时,直线在y轴上的截距最小,z有最小值为0;
当直线y=x+z过C(0,2)时,直线在y轴上的截距最大,z有最大值为2.
∴y-x的取值范围是[0,2].
故答案为:[0,2].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知命题p1:函数y=lntanx与y=$\frac{1}{2}$ln$\frac{1-cos2x}{1+cos2x}$是同一函数;p2:已知x0是函数f(x)=$\frac{1}{1-x}$+2x的一个零点,若1<x1<x0<x2,则f(x1)<0<f(x2),则在以下命题:①p1∨p2;②(¬p1)∧(¬p2);③(¬p1)∧p2;④p1∨(¬p2)中,真命题是①③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=2sin(2x+$\frac{π}{3}$).
(1)求函数的周期;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{2}$],求函数的值域.
(3)当x∈R时,求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若方程$\frac{{x}^{2}}{k-4}$-$\frac{{y}^{2}}{k+4}$=1表示双曲线,则它的焦点坐标为(  )
A.($\sqrt{2k}$,0),(-$\sqrt{2k}$,0)B.(0,$\sqrt{-2k}$),(0,$-\sqrt{2k}$)C.($\sqrt{2|k|}$,0),(-$\sqrt{2|k|}$,0)D.根据k的取值而定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα•cosα=$\frac{1}{4}$,且α是第三象限角,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等式sin(30°+120°)=sin30°是否成立?如果这个等式成立,那么能否说明120°是正弦函数y=sinx的周期?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a(a∈R,a是常数),求函数f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用lgx,lgy,lgz表示下列各式:
(1)lg$\frac{{x}^{\frac{1}{2}}{y}^{3}}{{z}^{-\frac{1}{2}}}$
(2)lg($\sqrt{x}•\root{5}{{y}^{3}}•{z}^{-1}$)

查看答案和解析>>

同步练习册答案