精英家教网 > 高中数学 > 题目详情
已知函数F(x)=|3x-1|+ax
(Ⅰ)当a=3时,解关于x的不等式f(x)≥|x-3|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求实数a的取值范围.
考点:绝对值不等式的解法,函数恒成立问题
专题:不等式的解法及应用
分析:(Ⅰ)当a=3时,关于x的不等式即|3x-1|-|x-3|+3x≥0,转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(Ⅱ)由题意可得函数h(x)=|3x-1|+
1
2
的图象应该在直线y=(1-a)x的上方或重合,可得0≤1-a≤1,或-2≤1-a<0,由此求得a的范围.
解答: 解:(Ⅰ)当a=3时,关于x的不等式f(x)≥|x-3|即|3x-1|+3x≥|x-3|,
即|3x-1|-|x-3|+3x≥0.
x≥3
3x-1-(x-3)+3x≥0
①,或
1
3
≤x<3
3x-1-(3-x)+3x≥0
②,或 
x<
1
3
1-3x-3+x+3x≥0

解①求得x≥3,解②求得
4
7
≤x<3,解③求得x∈∅.
综上可得,不等式的解集为[
4
7
,+∞).
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,即|3x-1|+ax≥x-
1
2
在R上恒成立,
即|3x-1|+
1
2
≥(1-a)x.
故函数h(x)=|3x-1|+
1
2
的图象应该在直线y=(1-a)x的上方或重合.
如图所示:

∴0≤1-a≤3,或-3≤1-a<0,解得-2≤a≤1,或 1<a≤4,
即a的范围是[-2,4]
点评:本题主要考查绝对值不等式的解法,很熟的恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,过左焦点作x轴的垂线交椭圆于A,B两点,且|AB|=1.(1)求椭圆E的方程:(2)设P,Q是椭圆E上的两点,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐标原点,当P,Q运动时,是否存在定圆O,使得直线PQ都与定圆O相切?若存在,请求出圆O的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x2-2ax(0≤x≤1)的最大值为M(a),最小值为m(a),试求M(a)与m(a)表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若|x|≤
π
4
,且f(x)=cos2x-acosx的最小值为-
1
4
,求a的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=log0.2(x2+6x+5)的单调递减区间
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是菱形,且PC⊥底面ABCD,E是侧棱PC上的动点.
(1)当E是侧棱PC的中点时,求证:PA∥面BDE
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设AB是过椭圆
x2
4
+y2
=1中心的弦,椭圆的左焦点为F,则△FAB面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正六棱锥的底面边长是2,高为1,则其顶点到底面各边的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一船在海面 A 处望见两灯塔 P,Q 在北偏西15°的一条直线上,该船沿东北方向航行4海里到达 B 处,望见灯塔 P 在正西方向,灯塔 Q 在西北方向,则两灯塔的距离为
 

查看答案和解析>>

同步练习册答案