分析 (Ⅰ)求出函数的导数,问题转化为a≤$\frac{1-2x}{{2x}^{2}}$在(0,+∞)恒成立,设m(x)=$\frac{1-2x}{{2x}^{2}}$,(x>0),根据函数的单调性求出a的范围即可;
(II)关于x的方程f(x)=-$\frac{1}{2}$x+b可化为:$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b=0,设方程的左边为g(x),利用导数讨论g(x)的单调性,得到它在[1,4]上先减再增,并且得到g(2)是极小值,g(1)和g(4)是极大值,由此建立不等式组并解之,可得实数b的取值范围.
解答 解:(Ⅰ)f(x)=lnx-$\frac{1}{2}$ax2-2x,定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-2ax-2=$\frac{-2{ax}^{2}-2x+1}{x}$,
若函数f(x)在定义域内单调递增,
则-2ax2-2x+1≥0在(0,+∞)恒成立,
即a≤$\frac{1-2x}{{2x}^{2}}$在(0,+∞)恒成立,
设m(x)=$\frac{1-2x}{{2x}^{2}}$,(x>0),
则m′(x)=$\frac{x-1}{{x}^{3}}$,(x>0),
令m′(x)>0,解得:x>1,令m′(x)<0,解得:0<m<1,
故m(x)在(0,1)递减,在(1,+∞)递增,
故m(x)的最小值是m(1)=-$\frac{1}{2}$,
故a≤-$\frac{1}{2}$.
(II)a=-$\frac{1}{2}$时,f(x)=-$\frac{1}{2}$x+b即$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b=0
设g(x)=$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b,则g'(x)=$\frac{(x-2)(x-1)}{2x}$,
∴当x∈(0,1)时,g'(x)>0;当x∈(1,2)时,g'(x)<0;当x∈(2,4)时,g'(x)>0.
得函数g(x)在(0,1)和(2,4)上是增函数.在(1,2)上是减函数
∴g(x)的极小值为g(2)=ln2-b-2;g(x)的极大值为g(1)=-b-$\frac{5}{4}$,且g(4)=-b-2+2ln2;
∵方程g(x)=0在[1,4]上恰有两个不相等的实数根.
∴$\left\{\begin{array}{l}{g(1)≥0}\\{g(2)<0}\\{g(4)≥0}\end{array}\right.$,解之得:ln2-2<b≤-$\frac{5}{4}$.
点评 本题主要考查函数与导数,以及函数与方程思想,体现了导数值为一种研究函数的工具,能完成单调性的判定和最值的求解方程,同时能结合常用数学思想,来考查同学们灵活运用知识解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$ | B. | $\frac{4}{5}$$\overrightarrow{a}$+$\frac{13}{10}$$\overrightarrow{b}$ | C. | -$\frac{4}{5}$$\overrightarrow{a}$-$\frac{3}{10}$$\overrightarrow{b}$ | D. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com