精英家教网 > 高中数学 > 题目详情
1.已知定义在R上的函数f(x)满足f(x+1)=f(x)-1,当x∈[0,1),f(x)=x,则f(-8)=8.

分析 直接利用已知条件,逐步求解f(-8)转化到已知的函数解析式的定义域范围,求解即可.

解答 解:定义在R上的函数f(x)满足f(x+1)=f(x)-1,当x∈[0,1),f(x)=x,
f(-8)=f(-7)+1=f(-6)+2=f(-5)+3=f(-4)+4=f(-3)+5=f(-2)+6=f(-1)+7=f(0)+8=8.
故答案为:8.

点评 本题考查抽象函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设f(x)=x3-8x,则$\stackrel{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$=4,$\underset{lim}{△x→0}$$\frac{f(2-△x)-f(2)}{△x}$=-4,$\lim_{x→2}$$\frac{f(x)-f(2)}{x-2}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x|x+a|+b满足f(-x)=-f(x)的条件是(  )
A.ab=0B.a+b=0C.a=bD.a2+b2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为(x-2)2+y2=25(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={-4,0},B={x|x2+2(a+1)x+a2-1=0,a∈R}.
(1)若A∪B=B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=-x2-4x-4,x∈[a,a+1](a∈R),则f(x)的最大值为$\left\{\begin{array}{l}-{a}^{2}-6a-9,a≤-3\\ 0,-3<a<-2\\-{a}^{2}-4a-4,a≥-2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.集合P={x|-3<x<4},Q={x|3a≤x≤a+4}.
(1)若P∩Q={x|1≤x<4},求实数a的值;
(2)若P∩Q=∅,求实数a的取值范围;
(3)若P∪Q=P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn为数列{an}的前n项和,a1=1,Sn+1=4an+2.
(1)设数列{bn}中,bn=an+1-2an,求证:{bn}是等比数列.
(2)设数列{cn}中,cn=$\frac{{a}_{n}}{{2}^{n}}$,求证:{cn}是等差数列.
(3)求数列{an}的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.写出下列函数的单调区间.
(1)y=|x+1|;
(2)y=-x2+ax;
(3)y=|2x-1|;
(4)y=-$\frac{1}{x+2}$.

查看答案和解析>>

同步练习册答案