精英家教网 > 高中数学 > 题目详情
19.如所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,使点M,N分别在AB,AD的延长线上,且对角线MN过点C,已知AB=2米,AD=3米.
(Ⅰ)若要使矩形AMPN的面积不大于32平方米,则DN的长应在什么范围内?
(Ⅱ)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.

分析 (Ⅰ)设DN的长为x(x>0)米,则AN=(x+3)米,表示出矩形的面积,利用矩形AMPN的面积不大于32平方米,即可求得DN的取值范围.
(Ⅱ)化简矩形的面积,利用基本不等式,即可求得结论.

解答 解:(Ⅰ)设DN的长为x(x>0)米,则AN=(x+3)米
∵$\frac{DN}{AN}=\frac{DC}{AM}$,∴AM=$\frac{2(x+3)}{x}$,
∴矩形AMPN的面积S=AN•AM=$\frac{2(x+3)^{2}}{x}$
∵矩形AMPN的面积不大于32平方米,
∴$\frac{2(x+3)^{2}}{x}$≤32
又x>0得x2-10x+9≤0
解得:1≤x≤9,即DN的长取值范围是[1,9];
(Ⅱ)矩形花坛的面积为S=AN•AM=$\frac{2(x+3)^{2}}{x}$=2x+$\frac{18}{x}$+12≥2$\sqrt{2x•\frac{18}{x}}$+12=24
当且仅当2x=$\frac{18}{x}$,即x=3时,矩形花坛的面积最小为24平方米.

点评 本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)是定义在R上的函数,对定义域内的任意x,y都有f(x+y)=f(x)+f(y),且f(-1)=2.当x>0时,f(x)<0.
(1)判断f(x)的奇偶性;
(2)求f(x)在x∈[-3,5]时的最大值和最小值;
(3)若f(m)+$\frac{1}{2}$f(9)>$\frac{1}{2}$f(m2)+f(3),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,BD是△ABC外接圆的切线,过A作BD的平行线交BC于E,交△ABC的外接圆于F.
(1)若∠D=∠ABD,BC=2$\sqrt{3}$,AC=4,求△ABC外接圆的面积;
(2)求证:AC•EF=AB•EC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD,底面ABCD为平行四边形,E、F分别为 PD、BC的中点,面PAB∩面PCD=l.
(1)证明:l∥AB;
(2)(文)证明:EF∥平面PAB.
(3)(理)在线段PD上是否存在一点G,使FG∥面ABE?若存在,求出$\frac{PG}{GD}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆C:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}$=1的右焦点为F2,右准线为l,左焦点为F1,点A∈l,线段AF2交椭圆C于点B,若$\overrightarrow{{F}_{2}A}$=4$\overrightarrow{{F}_{2}B}$,则|BF1|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知AB为半圆O的直径,AB=4,C为平面上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,角半圆于点E,DE=1,则BC的长为(  )
A.1B.2C.1.5D.2.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=$\sqrt{2}$,AC=2.
(Ⅰ)证明AD⊥BE;
(Ⅱ)求多面体EF-ABCD体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数 $z=\frac{1-i}{i}$的共轭复数为(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.直线x-2y+2=0经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>0,b>0)的两个顶点.
(1)求椭圆C的方程;
(2)已知抛物线D:y=x2+$\frac{1}{4}$,点M在抛物线D上运动,直线l:y=x+m(m∈[-$\sqrt{2}$,-1])交椭圆C于点N,P,求△MNP面积的最小值.

查看答案和解析>>

同步练习册答案