精英家教网 > 高中数学 > 题目详情
14.已知奇函数f(x)的定义域是R,且当x∈[1,5]时,f(x)=x3+1,则f(-2)=-9.

分析 利用奇函数的性质,直接求解即可.

解答 解:奇函数f(x)的定义域是R,且当x∈[1,5]时,f(x)=x3+1,
则f(-2)=-f(2)=-(23+1)=-9.
故答案为:-9.

点评 本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=e-x(ax2+bx+1)(其中e是常数,a>0,b∈R),函数f(x)的导函数为f′(x),且f′(-1)=0.
(1)若a=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当a>$\frac{1}{5}$时,若函数f(x)在区间[-1,1]上的最大值为4e,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2-mx+m2-19=0},B={x|x2-5x+6=0},C={2,-4},若A∩B≠∅,A∩C=∅,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式; (2)当f(x)>0时.求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线的方程为x+$\sqrt{3}$y=0.且焦点到相应准线的距离为$\frac{\sqrt{3}}{2}$,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}中an>0,且a1+a2+…+a8=32,则a4•a5的最大值等于(  )
A.4B.8C.16D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.几何体的三视图和相关数据如图所示,则该几何体的体积为(  )
A.$\frac{{7\sqrt{3}π}}{3}$B.$\frac{{8\sqrt{3}π}}{3}$C.$\frac{7π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=x2-2ax+a在x∈[1,3]上存在反函数,且|a-1|+|a-3|≤4,则a的取值范围是[0,1]∪[3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x2-3)=log2$\frac{{x}^{2}+6}{{x}^{2}+1}$,函数g(x)是定义在R上的奇函数,当x>0时,g(x)=2x
  (1)求f(x)和g(x)的解析式;
(2)求关于x的方程g(x)=f(1)+a在实数集R内有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案