精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(

A.m为实数,若方程表示双曲线,则m2

B.pq为真命题pq为真命题的充分不必要条件

C.命题xR,使得x2+2x+30”的否定是:xRx2+2x+30”

D.命题x0yfx)的极值点,则fx)=0”的逆命题是真命题

【答案】B

【解析】

根据双曲线的定义和方程判断A,复合命题真假关系以及充分条件和必要条件的定义判断B,特称命题的否定是全称命题判断C,逆命题的定义以及函数极值的性质和定义判断D.

对于A:若方程表示双曲线,则,解得,故A错误;

对于B:若为真命题,则同时为真命题,则为真命题,当假时,满足为真命题,但为假命题,即必要性不成立,则“为真命题”是“为真命题”的充分不必要条件,故B正确;

对于C:命题“,使得”的否定是:“”,故C错误;

对于D:命题“若的极值点,则”的逆命题是:“若,则的极值点”,此逆命题为假命题,比如:在中,,其中,但不是极值点,故D错误.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且与双曲线有相同的焦点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,点满足,点,若直线斜率为,求面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆过点两个焦点为.O的方程为.

1)求椭圆C的标准方程;

2)过且斜率为的动直线l与椭圆C交于AB两点,与圆O交于PQ两点(点APx轴上方),当成等差数列时,求弦PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如2n是平面直角坐标系上的一系列点,用函数来拟合该组数据,尽可能使得函数图象与点列比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数的拟合误差为:.已知平面直角坐标系上5个点的坐标数据如表:

x

1

3

5

7

9

y

12

4

12

若用一次函数来拟合上述表格中的数据,求该函数的拟合误差的最小值,并求出此时的函数解析式

若用二次函数来拟合题干表格中的数据,求

请比较第问中的和第问中的,用哪一个函数拟合题目中给出的数据更好?请至少写出三条理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,等比数列的前项和为,且

1)设,求数列的通项公式;

2)在(1)的条件下,且,求满足的所有正整数

3)若存在正整数,且,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1ρ2cosθ

(1)求C1C2交点的直角坐标;

(2)若直线l与曲线C1C2分别相交于异于原点的点MN,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠ABC60°ACBD交于点OPO⊥平面ABCDECD的中点连接AEBDG,点F在侧棱PD上,且DFPD

1)求证:PB∥平面AEF

2)若,求三棱锥EPAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形, 平面的中点.

(1)求证:

(2)求异面直线所成角的余弦值;

(3)判断直线与平面的位置关系,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知. 对于函数,若存在常数,使得,不等式都成立,则称直线是函数的分界线.

1)讨论函数的单调性;

2)当时,试探究函数是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.

查看答案和解析>>

同步练习册答案