精英家教网 > 高中数学 > 题目详情
8.已知点P(2,-1)与点Q关于点O(1,0)对称,则点Q的坐标为(0,1).

分析 直接利用中点坐标公式,求解即可.

解答 解:点P(2,-1)与点Q关于点O(1,0)对称,则点Q的坐标为(0,1).
故答案为:(0,1).

点评 本题考查中点坐标公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,且asinA+bsinB-csinC=asinB
(1)确定∠C的大小;
(2)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实数a、b、c满足a2+b2+c2=5.则6ab-8bc+7c2的最大值为45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量$\overrightarrow{i}$、$\overrightarrow{j}$作为基底.任作一个向量$\overrightarrow{a}$,由平面向量基本定理知,有且只有一对实数x、y,使得
$\overrightarrow{a}=x\overrightarrow{i}+y\overrightarrow{j}$…①
我们把(x,y)叫做向量$\overrightarrow{a}$的(直角)坐标,,记作$\overrightarrow{a}$=(x,y)…②
其中x叫做$\overrightarrow{a}$在x轴上的坐标,y叫做$\overrightarrow{a}$在y轴上的坐标,②式叫做向量的坐标也为(x,y).特别地,$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{0}$=(0,0).
如图,在直角坐标平面内,以原点O为起点作$\overrightarrow{OA}$=$\overrightarrow{a}$,则点A的位置由a唯一确定.
设$\overrightarrow{OA}=x\overrightarrow{i}+y\overrightarrow{j}$,则向量$\overrightarrow{OA}$的坐标(x,y)就是点A的坐标;反过来,点A是坐标(x,y)也是向量$\overrightarrow{OA}$的坐标.因此,在平面直角坐标系中,每一个平面向量都是可以用一对实数唯一表示.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)与函数g(x)=(x-1)2的图象关于y轴对称,若存在a∈R,使x∈[1,m](m>1)时,f(x+a)≤4x成立,则m的最大值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)=$\frac{alnx}{x+1}$+$\frac{b}{x}$在点(1,f(1))处的切线方程为x+2y-3=0.设h(x)=(x+1)f(x),求函数h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.3个不同的平面最多将空间分成a部分,最少将空间分成b部分,则b-a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,AE⊥PD于点E,l⊥平面PCD,求证:l∥AE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.f(x)=(log3 x)2+(a-1)log3x+3a-2,(x>0,a∈R).
(1)若函数f(x)的值域是[2,+∞),求a的值;
(2)若f(3x)+log3(9x)≤0对于任意x∈[3,9]恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案