分析 由已知等式求得tanθ=$\frac{\sqrt{2}}{2}$,再把要求的式子利用诱导公式化为1+tan θ+2tan2 θ,运算求得结果.
解答 解:由$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,
可得(4+2$\sqrt{2}$)tan θ=2+2$\sqrt{2}$,
所以tan θ=$\frac{2+2\sqrt{2}}{4+2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$
=[cos2 θ+sin θcos θ+2sin2 θ]•$\frac{1}{co{s}^{2}θ}$
=1+tan θ+2tan2 θ
=1+$\frac{\sqrt{2}}{2}$+1
=2+$\frac{\sqrt{2}}{2}$.
点评 本题主要考查利用诱导公式进行化简求值,求得tanθ=$\frac{\sqrt{2}}{2}$是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (2,+∞) | B. | (-∞,0) | C. | (-∞,0)∪(2,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | am>bm,则a>b | B. | a>b,则am>bm | C. | am2>bm2,则a>b | D. | a>b,则am2>bm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -4 | B. | 0 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | 2$\sqrt{2}$-3 | C. | 2$\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直角三角形 | B. | 钝角三角形 | C. | 等腰三角形 | D. | 等边三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com