精英家教网 > 高中数学 > 题目详情
已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常数),记f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn

(Ⅰ)求an
(Ⅱ)求
lim
n→∞
f(n+1)
f(n)

(Ⅲ)当p>1时,设bn=
p+1
2p
-
f(n+1)
f(n)
,求数列{pk+1bkbk+1}的前n项和.
分析:(1)由已知(1-p)Sn=p-pan,可得(1-p)Sn+1=p-pan+1.两式相减可得an+1与pan的递推关系,结合等比数列的通项公式可求
(2)由题意知,p≠±1时,由(1)可求Sn,利用二项式系数的性质可求f(n),进而可求f(n+1),代人可求极限
(3)由(2)可求bn,代入pk+1bkbk+1,利用裂项求和即可求解
解答:解:(1)∵(1-p)Sn=p-pan,①
∴(1-p)Sn+1=p-pan+1.②
②-①,得(1-p)an+1=-pan+1+pan
即an+1=pan.(3分)
在①中令n=1,可得a1=p.
∴{an}是首项为a1=p,公比为p的等比数列,an=pn.(4分)
(2)由题意知,p≠±1时,由(1)可得Sn=
p(1-pn)
1-p
=
p(pn-1)
p-1

1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an

=1+p
C
1
n
+p2
C
2
n
+…+
C
n
n
pn=(1+p)n=(p+1)n

f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn
=
p-1
p
(p+1)n
2n(pn-1)

f(n+1)=
p-1
p
(p+1)n+1
2n+1(pn+1-1)
.                  (5分)
lim
n→∞
f(n+1)
f(n)
=(p+1)
lim
n→∞
pn-1
2(pn+1-1)
=
p+1
2
,|p|<1
p+1
2p
,|p|>1

所以
lim
n→∞
f(n+1)
f(n)
=
p+1
2
,|p|<1
p+1
2p
,|p|>1
(8分)
(3)由(2)可得bn=
p+1
2p
-
f(n+1)
f(n)
=
(p-1)(p+1)
2p
1
pn+1-1

pk+1bkbk+1=
(p+1)(p2-1)
4p2
•(
1
pk+1-1
-
1
pk+2-1
)

所以
n
k=1
pk+1bkbk+1=
(p+1)(p2-1)
4p2
(
1
p2-1
-
1
pn+2-1
)
.         (12分)
点评:本题主要考查了利用数列的递推关系求解数列的通项公式,二项式系数的性质,数列的极限的求解,本题具有一定的综合性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p为大于1的常数),则an=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,观察下面的程序框图
(1)若d≠0,分别写出当k=2,k=3时s的表达式.
(2)当输入a1=d=2,k=100 时,求s的值( 其中2的高次方不用算出).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
3an
2
b
2
n
,数列{cn}前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,满足n
a
2
n
+(1-n2)a n-n=0

(1)计算a1,a2,并求数列{an}的通项公式;
(2)求数列{
an
2n
}
的前n项和Sn

查看答案和解析>>

同步练习册答案