精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求函数在点处的切线方程.

2)若对任意的恒成立,求的值.

3)在(2)的条件下,记,证明:存在唯一的极大值点,且

【答案】1;(2)实数的值为;(3)证明见解析.

【解析】

1)利用导数的几何意义求得切线的方程;

2)等价转化为对任意的恒成立,令,求得,按照,,分类讨论,利用导数研究函数的单调性,并注意,得到实数的值;

3)求得,令,利用导数研究单调性和最值,并根据零点存在定得到存在唯一的实数,使得,进而分析单调性,

的唯一极大值点.,可得到,

利用的范围和二次函数的性质可以证明最后的结论.

1)∵,∴

时,

切线方程为:,;

2的定义域为,对任意的恒成立,等价于

,对任意的恒成立,

,,

时,在, 单调递减,在,单调递增,

恒成立,符合题意;

时,在, 单调递增,

注意到,故,不合题意;

时,在,单调递减,

,不合题意,

综上所述,,所以实数的值为.

3

,则

上,单调递减,在上,单调递增,

,又∵

∴存在唯一的实数,使得,

在内,单调递增,在,单调递减,在在内,单调递增,

的唯一极大值点.

,

由于,证明完毕.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为绝对贫困户,否则认定该户为相对贫困户;当时,认定该户为亟待帮住户”.工作组又对这户家庭的受教育水平进行评测,家庭受教育水平记为良好不好两种.

1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与受教育水平不好有关:

受教育水平良好

受教育水平不好

总计

绝对贫困户

相对贫困户

总计

2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于的贫困户中,随机选取两户,用表示所选两户中亟待帮助户的户数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.

(1)将y表示成θ的函数,并写出θ的范围;

(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 ,直线与抛物线相交于两点,且当倾斜角为的直线经过抛物线的焦点时,有.

(1)求抛物线的方程;

(2)已知圆,是否存在倾斜角不为的直线,使得线段被圆截成三等分?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

45岁以下

45岁以上

总计

支持

不支持

总计

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的球面上有两点,且,球心为,若是球面上的动点,且二面角的大小为,则四面体的外接球表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)存在两个极值点,,的取值范围.

查看答案和解析>>

同步练习册答案