精英家教网 > 高中数学 > 题目详情
若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于(  )
A、
15
4
B、
13
4
C、
7
4
D、3
考点:程序框图
专题:计算题,算法和程序框图
分析:先根据流程图分析出该算法的功能,然后求出所求即可.
解答: 解:该算法的功能是求出四个数的平均数
故输出的数=
1+2+4+8
4
=
15
4

故选:A.
点评:根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)在R上是奇函数,且在(-1,0)上单调递增,且f(x+2)=-f(x).
(1)证明:f(x)的图象关于点(2k,0)中心对称,以及关于直线x=2k+1对称;
(2)讨论f(x)在区间(1,2)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四边形PABN的周长最小,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域分别为F,G,且F?G.若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=2x(x≤0),若g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则函数g(x)的解析式是(  )
A、2|x|
B、log2|x|
C、(
1
2
|x|
D、log 
1
2
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:
x=a+4t
y=-1-2t
(t为参数),圆C:ρ=2
2
cos(θ+
π
4
)
(极轴与x轴的非负半轴重合,且单位长度相同).
(1)求圆心C到直线l的距离;
(2)若直线l被圆C解得的弦长为
6
5
6
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过右焦点F的直线与双曲线交于A、B两点,且AB的中点为D(4,2),双曲线的离心率为
3
,则双曲线两焦点的距离等于(  )
A、7
B、
7
2
C、
4
7
D、
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式4x-5<3的解集为(  )
A、x>2B、x<2
C、(2,+∞)D、(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(1)求a与b的值;
(2)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+1(a∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数m的值为
 

查看答案和解析>>

同步练习册答案