精英家教网 > 高中数学 > 题目详情
15.已知i是虚数单位,若复数z满足(2-i)z=3+i,则复数z为1+i.

分析 把已知等式变形,然后由复数代数形式的乘除运算化简复数z得答案.

解答 解:由(2-i)z=3+i,
得$z=\frac{3+i}{2-i}=\frac{(3+i)(2+i)}{(2-i)(2+i)}=\frac{5+5i}{5}=1+i$,
故答案为:1+i.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设集合A={x|$\frac{2x-1}{x-2}$≤0},B={x||x|<1},则A∪B=(  )
A.[-$\frac{1}{2}$,1)B.(-1,1)∪(1,2)C.(-1,2)D.[-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列叙述正确的是(  )
A.第一或第二象限的角都可作为三角形的内角
B.钝角比第三象限的角小
C.第四象限的角一定是负角
D.始边相同而终边不同的角一定不相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.i为虚数单位,则$\frac{2}{1+i}$+i=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M,N分别为AB,DE的中点.
(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求平面EMC与平面BCD所成的锐二面角的余弦值;
(Ⅲ)在线段CD上是否存在点F,使直线MF与平面EMC所成角为$\frac{π}{6}$,若存在,求出CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(-1)nbn+anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x-1)2,如果g(x)=f(x)-log5|x-1|,则函数的所有零点之和为(  )
A.8B.6C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}的首项a1=1,前n项和为Sn,满足关系3Sn-5Sn-1=3(n≥2)
(1)求数列{an}的通项公式;
(2)设函数$f(x)=\frac{2x+3}{3x}$,作数列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通项公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=2px(p>0)上一点(5,m)到焦点的距离为6,P,Q分别为抛物线C与圆M:(x-6)2+y2=1上的动点,当|PQ|取得最小值时,向量$\overrightarrow{PQ}$在x轴正方向上的投影为(  )
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

同步练习册答案