精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(1)求证:PA⊥平面PBC;
(2)求二面角P-AC--B的一个三角函数值.
分析:(1)证明PA⊥平面PBC,只需证明PA⊥BC,PA⊥PB,利用平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,可得BC⊥平面PAB,结论可证;
(2)作PO⊥AB于点O,OM⊥AC于点M,连接PM,可证∠PMO是二面角P-AC-B的平面角,从而可求二面角P-AC--B的一个三角函数值.
解答:(1)证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,∴BC⊥平面PAB,
∵PA?平面PAB,∴PA⊥BC;
又∵PA⊥PB,PB∩BC=B
∴PA⊥平面PBC.…..4
(2)解:作PO⊥AB于点O,OM⊥AC于点M,连接PM,
∵平面PAB⊥平面ABC,∴PO⊥平面ABC,由三垂线定理得PM⊥AC,∴∠PMO是二面角P-AC-B的平面角.
PA=PB=
6

∵PA⊥PB,∴AB=2
3
,PO=BO=AO=
3

∵OM⊥AM,∠MAO=30°,∴OM=AOsin300=
AO
2

tan∠PMO=
PO
OM
=
AO
OM
=2
.…12
点评:本题考查线面垂直,考查面面垂直的性质,考查面面角,解题的关键是掌握线面垂直的判断,正确作出面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案