精英家教网 > 高中数学 > 题目详情

【题目】 为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有来沈阳的3名工人相互独立地从这60个项目中任选一个项目参与建设.

)求这3人选择的项目所属类别互异的概率;

)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为,求的分布列和数学期望.

【答案】I;(II分布列见解析,

【解析】

试题I人选择的项目所属类别互异的概率:;(II)任一名工人选择的项目属于基础设施类或产业建设类工程的概率:且符合二项分布,根据二项分布分布列公式即可求得.

试题解析:记第名工人选择的项目属于基础设施类,民生类,产业建设类分别为事件.

由题意知均相互独立.

3人选择的项目所属类别互异的概率:

)任一名工人选择的项目属于基础设施类或产业建设类工程的概率:

.

的分布列为

0

1

2

3

其数学期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,学校升旗仪式上,主持人站在主席台前沿D处,测得旗杆AB顶部的仰角为俯角最后一排学生C的俯角为最后一排学生C测得旗杆顶部的仰角为旗杆底部与学生在一个水平面上,并且不计学生身高.

(1)设米,试用表示旗杆的高度AB(米);

(2)测得米,若国歌长度约为50秒,国旗班升旗手应以多大的速度匀速升旗才能是国旗到达旗杆顶点时师生的目光刚好停留在B处?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且满足.

(1)判断函数上的单调性,并用定义证明;

(2)设函数在区间上的最大值

(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时取得极值.

(1)的值;

(2)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

(1)求选出的3名同学是来自互不相同学院的概率;

(2)为选出的3名同学中女同学的人数,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:

(1)估计该校男生的人数;

(2)估计该校学生身高在170185cm的概率;

(3)从样本中身高在180190cm的男生中任选2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为集合的子集,且,若,则称为集合元“大同集”.

(1)写出实数集的一个二元“大同集”;

(2)是否存在正整数集的二元“大同集”,请说明理由;

(3)求出正整数集的所有三元“大同集”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

求椭圆E的方程;

A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于CD两点,求为坐标原点的面积之差绝对值的最大值.

已知椭圆E上点处的切线方程为T为切点P是直线上任意一点,从P向椭圆E作切线,切点分别为NM,求证:直线MN恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案