精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:“存在x0∈[1,+∞),使得(log23) ≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(﹣∞,1),都有(log23)x<1”

【答案】C
【解析】解:命题p:“存在x0∈[1,+∞),使得(log23) ≥1”,因为log23>1,所以(log23) ≥1成立,故命题p为真命题,

则¬p“任意x∈[1,+∞),都有(log23)x<1”

所以答案是:C

【考点精析】利用特称命题对题目进行判断即可得到答案,需要熟知特称命题,它的否定;特称命题的否定是全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}及{bn}中,an+1=an+bn+ =1.设 ,则数列{cn}的前n项和为(  )
A.
B.2n+2﹣4
C.3×2n+2n﹣4
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )
A.乙可以知道两人的成绩
B.丁可能知道两人的成绩
C.乙、丁可以知道对方的成绩
D.乙、丁可以知道自己的成绩

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是(  )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?” 意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系. 曲线 的极坐标方程为 为曲线 上异于极点的动点,点 在射线 上,且 成等比数列.
(Ⅰ)求点 的轨迹 的直角坐标方程;
(Ⅱ)已知 , 是曲线 上的一点且横坐标为 ,直线 交于 两点,试求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x,y满足约束条件 则z=y-x的取值范围为( )
A.[-2,2]
B.
C.[-1,2]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0是f(x)= 的一个零点,x1∈(-∞,x0),x2∈(x0,0),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0

查看答案和解析>>

同步练习册答案