精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=-6×210,点(n,2a+1-an)在直线y=211x上,设bn=an+1-an+t,数列{bn}是等比数列.
(1)求出实数t;(2)令cn=|log2bn|,问从第几项开始,数列{cn}中连续20项之和为100?
分析:(1)根据点在正弦上得到数列{an}的项的递推关系,将此代入
bn
bn-1
,由于数列{bn}是等比数列,得到此商一个为常数,令211+2t=t,求出t的值.
(2)利用等比数列的通项公式求出bn,将t的值代入bn然后将bn代入cn,通过对k的讨论,将绝对值符号去掉,利用等差数列的前n项和求出连续20项之和列出方程求出开始的项.
解答:解:(1)由题设知2an+1=an+211n,从而an+1=
1
2
(an+211n)

当n>1时,
bn
bn-1
=
an+1-an+t
an-an-1+t
=
an-an-1+211+t
2(an-an-1+t)

若{bn}是等比数列,则211+2t=t,
故t=-211
(2)∵{bn}是以
1
2
为公比的等比数列,首项为a2-a1+t,
bn=(a2-a1-211)(
1
2
)n-1

a2=
1
2
(a1+211)=
1
2
(-6•210+211)
,a2-a1-211=211
bn=211(
1
2
)n-1=212-n

∴cn=|n-12|,
假设{cn}从第k项起连续20项之和为100,
当k≥12时,ck+ck+1+…+ck+19≥c12+c13+…+c31=190≥100不合题意,
当k<12时,ck+ck+1+…+ck+19=12-k+11-k+…+1+0+1+…+k+7=k2-5k+106=100
解得k=2或3,
所以数列{cn}从第二项或长三项起连续20项之和为100.
点评:求数列的前n项和问题,应该先求出数列的通项,然后选择合适的求和方法.常见的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案