精英家教网 > 高中数学 > 题目详情
5.经过点A(0,2)与抛物线y2=4x只有一个交点的直线方程是(  )
A.x-2y+4=0B.x-2y+4=0或y=2
C.x-2y+4=0或x=0D.x-2y+4=0或y=2或x=0

分析 分两种情况讨论:(1)当该直线存在斜率时;(2)该直线不存在斜率时,即可得出结论.

解答 解:(1)当过点A(0,2)的直线存在斜率时,设其方程为:y=kx+2,
代入抛物线方程,消y得k2x2+(4k-4)x+4=0,
①若k=0,方程为y=2,此时直线与抛物线只有一个交点(1,2);
②若k≠0,令△=(4k-4)2-16k2=0,解得k=$\frac{1}{2}$,此时直线与抛物线相切,只有一个交点,
此时直线方程为x-2y+4=0;
(2)当过点A(0,2)的直线不存在斜率时,该直线方程为x=0,与抛物线相切只有一个交点;
综上,过点A(0,2)与抛物线y2=4x只有一个交点的直线方程是y=2,x=0和x-2y+4=0.
故选:D.

点评 本题考查了直线与圆锥曲线的关系,考查了分类讨论的数学思想方法,训练了利用判别式判断一元二次方程解的个数,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知x>0,函数f(x)=$\frac{{x}^{2}-3x+1}{x}$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.tan($\frac{π}{6}$-2x)=1的解集是{x|x=$-\frac{π}{24}$+$\frac{1}{2}$kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α∈[$\frac{π}{12}$,$\frac{3}{8}$π],点A在角α的终边上,且|OA|=4cosα,则点A的纵坐标y的取值范围是(  )
A.[1,2]B.[$\frac{1}{2},1$]C.[$\frac{\sqrt{3}}{2}$,1]D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数的定义域.
(1)y=$\frac{1}{{log}_{2}x}$;
(2)y=$\sqrt{lo{g}_{3}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y,实数,a>1,b>1,且ax=by=2,
(1)若ab=4,则$\frac{1}{x}$+$\frac{1}{y}$=2
(2)a2+b=4,则 $\frac{2}{x}$+$\frac{1}{y}$的最大值2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.为了解今年某校高三毕业班准备报考飞行员学生的体重(单位:kg)情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第一小组的频数为6,则该校报考飞行员的总人数为48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=$\int_0^1{({3{x^2}+2x})dx}$,则二项式${({1-\frac{a}{x}})^5}$的展开式中x-2的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,离心率为$\frac{\sqrt{3}}{2}$,过原点O且倾斜角为$\frac{π}{3}$的直线l与椭圆E相较于A、B两点,若△AFB的周长为4+$\frac{8\sqrt{13}}{13}$,则椭圆方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

同步练习册答案