精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=log2(a-2x)+x-1存在零点,则实数a的取值范围是a≥2$\sqrt{2}$.

分析 根据函数零点与对应方程根之间的关系,我们可将f(x)存在零点转化为方程log2(a-2x)=1-x有根,结合对数方程和指数方程的解法,我们可将他转化为一个二次方程根的存在性总是,再根据二次方程根的个数与△的关系及韦达定理,我们易构造一个关于a的不等式,解不等式即可求出实数a的取值范围.

解答 解:若f(x)存在零点,
则方程log2(a-2x)=1-x有根
即21-x=a-2x有根,
令2x=t(t>0)
则原方程等价于$\frac{2}{t}$=a-t有正根
即t2-at+2=0有正根,
根据根与系数的关系t1t2=2>0,
即若方程有正根,必有两正根,
故有$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=a>0}\\{{a}^{2}-8≥0}\end{array}\right.$,∴a≥2$\sqrt{2}$.
故答案为:$a≥2\sqrt{2}$.

点评 本题考查的知识点是函数零点的判定定理,其中根据指数方程和对数方程的解法,将函数对应的方程转化为一个二次方程是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
(1)证明:AB⊥平面BB1C1C;
(2)设P是BE的中点,求三棱锥P-B1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn=k(3n-1),且a3=27.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为6,求$\frac{4}{a}$+$\frac{6}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=ax3+bx+9(a,b∈R),且f(-2016)=7,则f(2016)=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a<b<0,则下列不等式成立的是(  )
A.ac>bcB.$\frac{b}{a}$>1C.|a|>|b|D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射手进行一次射击,射中环数及相应的概率如下表
环数109877以下
概率0.250.30.20.15N
(1)根据上表求N的值(2)该射手射击一次射中的环数小于8环的概率
(3)该射手射击一次至少射中8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}的通项公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,则该数列的前8项之和等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.知曲线C的极坐标方程为3ρsinθ+2ρcosθ=2,曲线C1:$\left\{\begin{array}{l}x=1+3cosα\\ y=2sinα\end{array}\right.(α$为参数).
(1)求曲线C,C1的普通方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的范围.

查看答案和解析>>

同步练习册答案