精英家教网 > 高中数学 > 题目详情
12.一辆汽车在某段路程中的行驶速率与时间的关系如图所示.
(1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.

分析 (1)由频率分布图能求出阴影部分的面积,表示汽车在4小时内行驶的路程.
(2)由这辆汽车在行驶该段路程前里程表的读数是8018km,结合频率分布直方图能求出汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并能作出图象.

解答 解:(1)阴影部分的面积为:
50+70+90+60=270,
表示汽车在4小时内行驶的路程为270 km. (4分)
(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,
汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:
$s=\left\{\begin{array}{l}50t+8018,0≤t<1\\ 70(t-1)+8068,1≤t<2\\ 90(t-2)+8138,2≤t<3\\ 60(t-3)+8228,3≤t≤4.\end{array}\right.$(4分)
图象如下图:

(4分)

点评 本题考查阴影面积的求法,考查函数解析式及图象的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知点P(-2$\sqrt{2}$,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,过点P作圆O:x2+y2=4的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设等比数列{an}的前n项为Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,则数列{$\frac{1}{{a}_{n}}$}的前5项和为(  )
A.$\frac{1}{2}$或$\frac{11}{32}$B.$\frac{1}{2}$或$\frac{31}{32}$C.$\frac{11}{32}$或$\frac{31}{32}$D.$\frac{11}{32}$或$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l的距离为d,其中D2+E2=F2,且F>0.
(1)求F的取值范围;
(2)求d2-r2的值;
(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到函数y=cos(2x-$\frac{π}{6}$)的图象,只需将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两条直线l1:2x+y-2=0与l2:2x-my+4=0.
(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;
(2)若l1,l2以及x轴围成三角形的面积为1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图(1)在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图(2)中△A1BE的位置,得到四棱锥A1-BCDE.


(Ⅰ)求证:CD⊥平面A1OC;
(Ⅱ)当平面A1BE⊥平面BCDE时,若a=2,求四棱锥A1-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)满足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上单调递减,则方程f(x)=$\frac{1}{2}$在区间[-2014,2014]内根的个数为1343.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.存在函数f(x)满足对于任意x∈R都有(  )
A.f(|x|)=x+1B.f(x2)=2x+1C.f(|x|)=x2+2D.f($\sqrt{x}$)=3x+2

查看答案和解析>>

同步练习册答案