【题目】如图所示,四棱锥中,底面, ,为的中点.
(1)求证:;
(2)求点D与平面的距离.
【答案】(1)见解析; (2).
【解析】
(1)在中,由余弦定理可解得,可知是直角三角形,又为等边三角形,所以,所以,即可证明平面(2)由(1)可知,以点为原点,以,,所在直线分别为轴,轴,轴建立空间直角坐标系,利用空间向量可求直线与平面所成角的正弦值.
(1)因为,,,
所以,,
在中,,,,
由余弦定理可得:
解得:
所以,所以是直角三角形,
又为的中点,所以,又,所以为等边三角形,
所以,所以,又平面,平面,
所以平面.
(2)由(1)可知,以点为原点,以,,所在直线分别为轴,轴,轴建立空间直角坐标系,则,,,.
所以,,.
设为平面的法向量,则,即
设,则,,即平面的一个法向量为,
所以
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】下列命题中正确的个数是( )
①由五个面围成的多面体只能是三棱柱;
②由若干个平面多边形所围成的几何体是多面体;
③仅有一组对面平行的五面体是棱台;
④有一面是多边形,其余各面是三角形的几何体是棱锥.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将△ADE折起,在折起过程中,有几个正确( )
①ED⊥平面ACD ②CD⊥平面BED
③BD⊥平面ACD ④AD⊥平面BED
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西光厂眼镜车间接到一批任务,需要加工6000个型零件和2000个型零件.这个车间有214名工人,他们每一个人加工5个型零件的时间可以加工3个型零件.将这些工人分成两组,两组同时工作,每组加工一种型号的零件,为了在最短的时间内完成这批任务,应怎样分组?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面边长为、高为的正六棱柱展厅内,长为,宽为的矩形油画挂在厅内正前方中间.
(1)求证:平面平面;
(2)当游客在上看油画的纵向视角(即)最大时,求与油画平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抗击疫情,中国人民心连心,向世界展示了中华名族的团结和伟大,特别是医护工作者被人们尊敬的称为“最美逆行者”,各地医务工作者主动支援湖北武汉.现有7名医学专家被随机分配到“雷神山”、“火神山”两家医院.
(1)求7名医学专家中恰有两人被分配到“雷神山”医院的概率;
(2)若要求每家医院至少一人,设,分别表示分配到“雷神山”、“火神山”两家医院的人数,记,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com