精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆心在轴上,半径为2的圆位于轴右侧,且与直线相切.

(1)求圆的方程;

(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

【答案】(1)(2)存在,点的坐标是,对应面积的最大值为

【解析】

(1) 设圆心是,根据直线与圆相切的性质结合点到直线距离公式可以求出的值,也就可以写出圆的方程;

(2) 根据点在圆上,可以求出的取值范围,根据点到直线距离公式可以求出原点到直线的距离,利用垂径定理可以求出,最后求出的面积的表达式,最后利用配方法求出的面积最大.

解(1)设圆心是.

解得的方程为

(2)在圆,

.

原点到直线的距离解得

.

.

,即时取得最大值.

此时点的坐标是,面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,求函数在点处的切线方程;

2)若函数存在两个极值点

①求实数的范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,上下顶点分别为,左、右焦点分别为,离心率为e.

1)若,设四边形的面积为,四边形的面积为,且,求椭圆C的方程;

2)若,设直线与椭圆C相交于PQ两点,分别为线段的中点,坐标原点O在以MN为直径的圆上,且,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:

(1)求点D到平面A1BE的距离;

(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】折纸与数学有着千丝万缕的联系,吸引了人们的广泛兴趣.因纸的长宽比称为白银分割比例,故纸有一个白银矩形的美称.现有一张如图1所示的

分别为的中点,将其按折痕折起(如图2),使得四点重合,重合后的点记为,折得到一个如图3所示的三棱锥.记的中点,在中,边上的高.

1)求证:平面

2)若分别是棱上的动点,且.当三棱锥的体积最大时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:

加盟店个数(个)

1

2

3

4

5

单店日平均营业额(万元)

10.9

10.2

9

7.8

7.1

(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;

(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;

(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.

(参考数据及公式:,线性回归方程,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(注意:在试题卷上作答无效)

已知数列中,.

)设,求数列的通项公式;

)求使不等式成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(Ⅰ)列表求的所有极值;

(Ⅱ)当时,

(i)求证:

(ii)若恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年,在庆祝中华人民共和国成立周年之际,又迎来了以“创军人荣耀,筑世界和平”为宗旨的第七届世界军人运动会.据悉,这次军运会将于日至日在美丽的江城武汉举行,届时将有来自全世界多个国家和地区的近万名军人运动员参赛.相对于奥运会、亚运会等大型综合赛事,军运会或许对很多人来说还很陌生.为此,武汉某高校为了在学生中更广泛的推介普及军运会相关知识内容,特在网络上组织了一次“我所知晓的武汉军运会”知识问答比赛,为便于对答卷进行对比研究,组委会抽取了名男生和名女生的答卷,他们的考试成绩频率分布直方图如下:

(注:问卷满分为分,成绩的试卷为“优秀”等级)

(1)从现有名男生和名女生答卷中各取一份,分别求答卷成绩为“优秀”等级的概率;

(2)求列联表中的值,并根据列联表回答:能否在犯错误的概率不超过的前提下认为“答卷成绩为优秀等级与性别有关”?

总计

优秀

非优秀

总计

(3)根据男、女生成绩频率分布直方图,对他们的成绩的优劣进行比较.

附:参考公式:,其中.

查看答案和解析>>

同步练习册答案