精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)=
1
|x-2|
,x≠2
1 ,x=2
,若关于x的方程f2(x)+af(x)+b=3有三个不同的实数解x1,x2,x3,且x1<x2<x3,则下列结论错误的有
.(填序号)
①x12+x22+x32=14;    ②a+b=2;   ③x1+x3>2x2;    ④x1+x3=4.
分析:令x=3得到f(3)=1代入到方程中得到a+b=2,则②正确;令x=4得到f(4)=
1
2
代入方程得到a+2b=11与a+b=2联立解得a=-7,b=9,则方程变为f2(x)-7f(x)+9=3即f2(x)-7f(x)+6=0得到f(x)=1或f(x)=6,则有一个解为2,另一解为
13
6
,第三解为
11
6
,则①,④正确;③错误.
解答:解:令x=4,得:f(4)=
1
2

代入方程得到a+2b=11;
令x=3得到f(3)=1代入到方程中得到a+b=2.所以②正确;
求出a=-7,b=9,则代入到关于x的方程f2(x)+af(x)+b=3得:
f2(x)-7f(x)+6=0
解得:f(x)=1或f(x)=6,
则三个解分别为
11
6
,2,
13
6

∴①,④正确,③错误.
故答案③.
点评:本题考查了函数与方程的综合应用,解题时要认真审题,仔细解答,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案