精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点F1(-
3
,0),F2 (
3
,0)
,且椭圆短轴的两个端点与F2构成正三角形.
(I)求椭圆的方程;
(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使
PE
QE
恒为定值,求m的值.
分析:(I) 由题意得到 c=
3
,tan30°=
3
3
=
b
c
,可得b、a值,即得椭圆的方程.
(Ⅱ)用点斜式设出直线l的方程,代入椭圆的方程化简,得到根与系数的关系,代入
PE
QE
 的解析式化简得   
 
(4m2-8m+1)k2+(m2-4)
1+4k2
恒为定值,故有 
4m2-8m+1
m2-4
= 4
,从而解出m值.
解答:解:(I)由题意可得 c=
3
,tan30°=
3
3
=
b
c
,∴b=1,∴a=2,
故椭圆的方程为
x2
4
+
y2
1
=1

(Ⅱ) 设直线l的方程为 y-0=k(x-1),即 y=kx-k.
代入椭圆的方程化简可得(1+4k2)x2-8k2x+4k2-4=0,
∴x1+x2=
8k2
1+4k2
,x1•x2=
4k2- 4
1+4k2

PE
QE
=(m-x1,-y1 )•(m-x2,-y2)=(m-x1)(m-x2)+y1y2 
=(m2+k2)+(1+k2)x1•x2-(m+k2)(x1+x2
=(m2+k2)+(1+k2
4k2- 4
1+4k2
-(m+k2)(
8k2
1+4k2

=
(4m2-8m+1)k2+(m2-4)
1+4k2
  恒为定值,
4m2-8m+1
m2-4
= 4

∴m=
17
8
点评:本题考查椭圆的标准方程,以及椭圆的简单性质的应用,一元二次方程根与系数的关系,由
 
(4m2-8m+1)k2+(m2-4)
1+4k2
恒为定值,得到
4m2-8m+1
m2-4
= 4
,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州中学高三(上)第二次统练数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2为椭圆的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若,求直线l的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州中学(上)第二次统练数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2为椭圆的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若,求直线l的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市浦东新区高三(下)期中数学试卷(理科)(解析版) 题型:解答题

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
(1)若椭圆,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源:2011年上海市徐汇区、金山区高考数学二模试卷(理科)(解析版) 题型:解答题

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
(1)若椭圆,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

同步练习册答案