精英家教网 > 高中数学 > 题目详情
△ABC的三个内角A,B,C满足sinA•cos2
C
2
+sinC•cos2
A
2
=
3
2
sinB,则cosB的取值范围是
[
1
2
,1)
[
1
2
,1)
分析:通过逆应用二倍角公式,化简方程,然后利用两角和的正弦函数、三角形的内角和,推出a、b、c关系,再利用余弦定理和基本不等式求出cosB的不等式,利用余弦函数的单调性求cosB的取值范围即可.
解答:解:由sinA•cos2
C
2
+sinC•cos2
A
2
=
3
2
sinB,
可得sinA•
1+cosC
2
+sinC•
1+cosA
2
=
3
2
sinB
得:sinA+sinAcosC+sinC+sinCcosA=3sinB,
即sinA+sin(A+C)+sinC=3sinB,
∴sinA+sinC=2sinB,即2b=a+c.
由余弦定理,得:cosB=
a2+c2-b2
2ac

=
a2+c2-(
a+c
2
)
2
2ac

=
3(a2+c2)-2ac
8ac

6ac-2ac
8ac

=
1
2
,当且仅当a=c时取等号,
∵cosx<1,
所以cosB的范围是[
1
2
,1).
故答案为:[
1
2
,1)
点评:本题是中档题,考查正弦定理.余弦定理、两角和的正弦函数的应用,基本不等式的应用,难度较大,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B
,则sinC=(  )
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
其中正确命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,B=60°,则sinC=
1
1

查看答案和解析>>

同步练习册答案