精英家教网 > 高中数学 > 题目详情
若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图象关于
 
对称.
分析:本题是y=f(x)与y=f(-x);y=f(x)与y=-f(x);y=f(x)与y=-f(-x)的图象对称问题.
解答:解:∵lg a+lg b=0
∴a=
1
b

∴f(x)=ax=(
1
b
x与y=bx关于y轴对称.
故答案为:y轴.
点评:本题主要考查当指数函数的底数互为倒数时的图象对称问题.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax(a>0且a≠1)与g(x)=bx(b>0且b≠1)的反函数分别为
f-1(x)与g-1(x),若lga+lgb=0,则为f-1(x)与g-1(x)的图象的位置关系是(  )
A、关于x轴对称B、关于y轴对称C、关于原点对称D、关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

6、若lga+lgb=0,则函数f(x)=ax(a>0且a≠1)与g(x)=-logbx(b>0且b≠1)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若lga+lgb=0,则函数f(x)=xa与g(x)=xb在第一象限内的图象关于(  )对称.
A、直线y=xB、x轴C、y轴D、原点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax、g(x)=bx(a>0,b>0,且a≠1,b≠1)的反函数分别为y=f-1(x)、y=g-1(x).若lga+lgb=0,则y=f-1(x)与y=g-1(x)的图象(  )

查看答案和解析>>

同步练习册答案