精英家教网 > 高中数学 > 题目详情

【题目】已知过点的动直线与圆相交于两点,中点,与直线相交于.

(1)当垂直时,求的方程;

(2)当时,求直线的方程;

(3)探究是否与直线的倾斜角有关?若无关,求出其值;若有关,请说明理由.

【答案】(1);(2);(3)无关,.

【解析】

1)利用垂直时求出,利用点斜式即可得解;

2)讨论直线斜率是否存在,当斜率存在时,利用点斜式设出方程,再根据即可得解;

3)先转化,根据直线斜率是否存在分别求出点点坐标,计算后即可得解.

1直线与直线垂直,且.

故直线方程为,即.

2)①当直线轴垂直时,易知符合题意;

②当直线轴不垂直时,设直线的方程为,即

中点,圆圆心为,半径为

,则由,得

直线.

故直线的方程为.

(3).

①当轴垂直时,易得,则,又

.

②当的斜率存在时,设直线的方程为

则由

.

.

综上所述,与直线的斜率无关,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,(常数).

(Ⅰ)当的图象相切时,求的值;

(Ⅱ)设,若存在极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)讨论函数的极值;

(2)对任意成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农机公司出售收割机,一台收割机的使用寿命为五年,在农机公司购买收割机时可以一次性额外订购买若干次维修服务,费用为每次100元,每次维修时公司维修人员均上门服务,实际上门服务时还需支付维修人员的餐饮费50/次;若实际维修次数少于购买的维修次数,则未提供服务的订购费用退还50%;如果维修次数超过了购买的次数,农机公司不再提供服务,收割机的维修只能到私人维修店,每次维修费用为400元,无须支付餐饮费;--位农机手在购买收割机时,需决策一次性购买多少次维修服务.
为此,他拟范收集整理出一台收割机在五年使用期内维修次数及相应的频率如下表:

(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?

(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面为梯形的四棱锥S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求证:AC⊥SD;

(2)求三棱锥B﹣SAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.

(Ⅰ)求至少回答对一个问题的概率;

(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;

(Ⅲ)求这位挑战者闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆经过点,且点为其一个焦点.

(1)求椭圆的方程;

(2)设椭圆轴的两个交点为,不在轴上的动点在直线上运动,直线分别与椭圆交于点,证明:直线通过一个定点,且的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;

②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;

③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;

④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.

其中正确的结论是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

同步练习册答案