精英家教网 > 高中数学 > 题目详情

设三棱锥A-BCD的顶点A在底面BCD内的射影为O,且OA,OB,OC,OD将此三棱锥分割成三个体积相等的小三棱锥O-ABC,O-ABD,O-ACD,则O点是△BCD的


  1. A.
    重心
  2. B.
    外心
  3. C.
    内心
  4. D.
    垂心
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

科目:高中数学 来源: 题型:

3、在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=
12
r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则此四面体的体积V=
 

(2)在平面几何里有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积之间的关系,可以得出的正确结论是:“设三棱锥A-BCD的三侧面ABC,ACD,ADB两两垂直,则
 
.”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)如图(1)在等腰△ABC中,D、E、F分别是AB、AC、BC边的中点,现将△ACD沿CD翻折,使得平面ACD⊥平面BCD.(如图(2))
(1)求证:AB∥平面DEF;
(2)求证:BD⊥AC;
(3)设三棱锥A-BCD的体积为V1、多面体ABFED的体积为V2,求V1:V2的值.

查看答案和解析>>

科目:高中数学 来源:2014届广东省佛山市高二下学期期中考试文科数学试卷(解析版) 题型:填空题

在平面几何里,有勾股定理:“设的两边AB、AC互相垂直,则。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则                     

 

查看答案和解析>>

同步练习册答案