精英家教网 > 高中数学 > 题目详情
16.如图,在矩形ABCD中,E,F分别为AD上的两点,已知∠CAD=θ,∠CED=2θ,∠CFD=4θ,AE=600,EF=200$\sqrt{3}$,则CD=300.

分析 设DF=m,CD=n,则由题意,tanθ=$\frac{n}{600+200\sqrt{3}+m}$,tan2θ=$\frac{n}{200\sqrt{3}+m}$,tan4θ=$\frac{n}{m}$,即可求出CD.

解答 解:设DF=m,CD=n,则由题意,
tanθ=$\frac{n}{600+200\sqrt{3}+m}$,tan2θ=$\frac{n}{200\sqrt{3}+m}$,tan4θ=$\frac{n}{m}$,
利用二倍角正切公式,代入计算解得θ=15°,m=100$\sqrt{3}$,n=300.
故答案为:300.

点评 本题考查二倍角的正切公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,若a1=2,$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),则满足不等式anSn≤2200的最大正整数n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={y|y=$\sqrt{{x^2}-3x+2}$},B={x|x=-t-1,t∈N},则(  )
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知O为坐标原点,点A(1,0),若点M(x,y)为平面区域$\left\{{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}}\right.$内的一个动点,则$|{\overrightarrow{OA}+\overrightarrow{OM}}|$的最小值为(  )
A.3B.$\sqrt{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,点E是SB的中点,∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD为等边三角形.
(Ⅰ)求证:SD∥平面ACE;
(Ⅱ)求二面角D-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=sin(2ωx+$\frac{π}{6}}$)(ω>0)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将其向左平移$\frac{π}{6}$个单位后,所得的图象关于y轴对称,则ω的值可能是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为(  )
A.27B.30C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,矩形ABCD中AB=2,BC=$\frac{{2\sqrt{3}}}{3}$,M,N分别为AB,CD中点,BD与MN交于O,现将矩形沿MN折起,使得二面角A-MN-B的大小为$\frac{π}{3}$,则折起后cos∠DOB为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.以直角坐标系中的原点O为极点,x轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=$\frac{2}{1-sinθ}$.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)过极点O作直线l交曲线于点P,Q,若|OP|=3|OQ|,求直线l的极坐标方程.

查看答案和解析>>

同步练习册答案