精英家教网 > 高中数学 > 题目详情

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班级学生平均每周咀嚼槟榔的颗数较多?

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

【答案】(1)班学生(2)

【解析】

(1)班学生每周平均咀嚼槟榔的颗数为17颗,班学生每周平均咀嚼槟榔的颗数为19颗.故估计班学生平均每周咀嚼槟榔的颗数较多.(2)利用古典概型的概率计算的概率.

解:(1)班样本数据的平均值为.由此估计班学生每周平均咀嚼槟榔的颗数为17颗;

班样本数据的平均值为,由此估计班学生每周平均咀嚼槟榔的颗数为19颗.故估计班学生平均每周咀嚼槟榔的颗数较多.

(2)班的样本数据中不超过19的数据有3个,分别为9,11,14,班的样本数据中不超过21的数据也有3个,分别为11,12,21.

班和班的样本数据中各随机抽取一个共有9种不同情况,

分别为.

其中的情况有三种,

的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】互联网时代的今天,移动互联快速发展,智能手机技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、注:图中2单位:小时代表分组为i的情况

求饼图中a的值;

假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?只需写出结论

从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率,若能,请算出这个概率;若不能,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,,点在抛物线.

1)求的边所在的直线方程;

2)求的面积最小值,并求出此时点的坐标;

3)若为线段上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则的最小值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是( )

A. 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样

B. 线性回归直线一定过样本中心点

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D. 若一组数据1、、2、3的众数是2,则这组数据的中位数是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季,甲、乙两名篮球运动员都参加了场比赛,他们所有比赛得分的情况如下:

甲:

乙: .

(1)求甲、乙两名运动员得分的中位数.

(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点,对称轴为坐标轴的双曲线与圆有公共点,且圆在点处的切线与双曲线的一条渐近线平行,则该双曲线的实轴长为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.

(1)求的值;

(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点。当变化时,求面积的最大值;

(3)在(2)的条件下,经过点作直线与该椭圆交于两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆关于直线对称.

1)求圆的方程;

2)过点作两条相异直线分别与圆相交于两点,若直线的倾斜角互补,问直线与直线是否垂直?请说明理由.

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�