精英家教网 > 高中数学 > 题目详情
已知双曲线,过右焦点作双曲线的其中一条渐近线的垂线,垂足为,交另一条渐近线于点,若(其中为坐标原点),则双曲线的离心率为(    )
A.B.C.D.
B

试题分析:由题意l的方程为ax+by-ac=0,则O点到直线的距离,∵,∴,又在中,,设点Q的坐标为(m,n),则在中,利用面积相等得,∴,联立方程消x得Q的纵坐标,∴,∴,∴,∴,故选B
点评:解决此类问题的关键是利用题目条件找到关于a、b、c的等式关系,然后利用双曲线离心率的定义求解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N  (点M在点N的右侧),且。椭圆D:的焦距等于,且过点

( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线斜率的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与抛物线交于两点,则线段的中点坐标是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,右焦点到直线 的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为,过焦点倾斜角为的直线交抛物线于两点,点在抛物线准线上的射影分别是,若四边形的面积为,则抛物线的方程为____

查看答案和解析>>

同步练习册答案