精英家教网 > 高中数学 > 题目详情

【题目】如图在四棱锥PABCD底面ABCD为菱形BAD60°QAD的中点.

(1)PAPD求证:平面PQB⊥平面PAD

(2)M在线段PCPMtPC试确定实数t的值使得PA∥平面MQB.

【答案】(1)详见解析(2)PMPCt.

【解析】试题分析:1)要证平面平面,只要证平面,它可以由得到.(2)中连接,因为平面,故,由此可以得到,从而可以得到的大小.

解析:(1)证明:连结四边形为菱形 为正三角形, 的中点. 的中点 平面 平面∴平面平面

(2)使得平面连接的中点.又∵的中线.∴为正三角形的中心. 令菱形的边长为a.∵平面 平面平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知椭圆C的离心率为是椭圆的两个焦点, 是椭圆上任意一点,且的周长是

1)求椭圆C的方程;

2)设圆T,过椭圆的上顶点作圆T的两条切线交椭圆于EF两点,当圆心在轴上移动且时,求EF的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[1,1]上的奇函数[0,1]f(x)2xln(x1)1.

(1)求函数f(x)的解析式;并判断f(x)[1,1]上的单调性(不要求证明)

(2)解不等式f(2x1)f(1x2)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接ABBE,如图②所示,设点FAB的中点.

(1)求证:DE⊥平面BCD

(2)若EF∥平面BDG,其中GAC上一点,求三棱锥BDEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)证明: ,直线都不是曲线的切线;

(2)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的正视图和侧视图都是边长为1的正方形,且体积为,则这个几何体的俯视图可能是下列图形中的________(填入所有可能的图形前的编号)

①锐角三角形;②直角三角形;③钝角三角形;④四边形;⑤扇形;⑥圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

时,求函数在点处的切线方程;

若函数有两个零点,试求的取值范围;

时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁的以下的年龄段应抽取__________人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

同步练习册答案