精英家教网 > 高中数学 > 题目详情
双曲线(a>0,b>0)的左右焦点为F1,F2,其上一点P,若∠F1PF2=θ,
(1)证明:三角形
(2)若双曲线的离心率为2,斜率为1的直线与双曲线交于B、D两点,BD的中点M(1,3),双曲线的右顶点为A,右焦点为F,若过A、B、D三点的圆与x轴相切,请求解双曲线方程和的值.
【答案】分析:(1)设|PF1|=m,|PF2|=n,由余弦定理得(2c)2=m2+n2-2mncosθ=4a2+2mn(1-cosθ),所以=,再由正弦定理能证明=
(2)因为双曲线的离心率为2,所以双曲线方程为:3x2-y2=3a2,由题设知l的方程为:y=x+2,A(a,0),F(2a,0),联立方程得2x2-4x-4-3a2=0,x1+x2=2,,由此入手能够求出的值.
解答:(1)证明:设|PF1|=m,|PF2|=n,由余弦定理得
(2c)2=m2+n2-2mncosθ
=(m-n)2+2mn-2mncosθ
=4a2+2mn(1-cosθ),
=
由正弦定理===.…(5分)
(2)解:因为双曲线的离心率为2,
所以双曲线方程为:3x2-y2=3a2
由题设知l的方程为:y=x+2,A(a,0),F(2a,0),
联立方程得2x2-4x-4-3a2=0,
x1+x2=2,
若过A、B、D三点的圆与x轴相切,
=2=2MA,
∴6+3a2=(a-1)2+9,
∴a=1,
∴双曲线方程为.…(8分)
故不妨设x1≤-a,x2≥a,
则|BF|===a-2x1
|FD|===2x2-a,
∴|BF|•|FD|=(a-2x1)(2x2-a)
=-4x1x2+2a(x1+x2)-a2
=5a2+4a+8
=17,
=17.…(12分)
点评:本题考查直线与圆锥曲线的综合问题,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意正弦定理和余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16.已知F1、F2为双曲线=1(a>0,b>0且a≠b)的两个焦点,P为双曲线右支上异于顶点的任意一点,O为坐标原点.下面四个命题

(A)△PF1F2的内切圆的圆心必在直线x=a上;

(B)△PF1F2的内切圆的圆心必在直线x=b上;

(C)△PF1F2的内切圆的圆心必在直线OP上;

(D)△PF1F2的内切圆必通过点(a,0).

    其中真命题的代号是__________(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F、F为双曲线(a>0,b>0)的焦点,过F作垂直于x轴的直线交双曲线于点P,且∠PFF=30,求双曲线的渐近线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中,且

(1)求点C的轨迹方程;

(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:为定值;

(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新课标高三二轮复习综合验收(6)理科数学试卷 题型:选择题

已知双曲线(a>0,b>0)的两个焦点为,点A在双曲线第一象限的图象上,若△的面积为1,且,则双曲线方程为(    )

A.        B.

C.     D.

 

查看答案和解析>>

科目:高中数学 来源:2013届陕西省高二上学期期中文科数学试卷 题型:解答题

已知F1F2为双曲线a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的离心率.

 

查看答案和解析>>

同步练习册答案