精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过两个焦点,A,B是椭圆C的长轴端点.

(1)求椭圆C的标准方程和圆O的方程;
(2)设P、Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x平行,直线AP、BP与y轴的交点即为M、N,试证明∠MQN为直角.

【答案】
(1)解:由椭圆定义可得2a=4,又b=c且b2+c2=a2

解得a=2,b=c= ,即椭圆C的标准方程为

则圆O的方程为x2+y2=2;


(2)证明:设P(x0,y0),直线AP:y=k(x+2)(k≠0),

令x=0可得M(0,2k).

和y=k(x+2)(k≠0)联立可得

(2k2+1)x2+8k2x+8k2﹣4=0,

直线BP的斜率为

直线BP:

令x=0可得

设Q(xQ,y0),则

可得

所以 ,即∠MQN是定值90°


【解析】(1)运用椭圆的定义和a,b,c的关系,解方程可得椭圆的方程和圆的方程;(2)设P(x0 , y0),直线AP:y=k(x+2)(k≠0),求得M,代入椭圆方程,求得P的坐标,求出直线BP的方程,可得N的坐标,设Q(xQ , y0),求得向量QM,QN的坐标,运用向量数量积计算即可得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将7名应届师范大学毕业生分配到3所中学任教.

(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?

(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为

(1)求椭圆的方程;

(2)设点为椭圆的上顶点,若直线与椭圆交于两点不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;

(3)在(2)的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数),其中

(1)当时,讨论函数的单调性;

(2)若函数仅在处有极值,求的取值范围;

(3)若对于任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线将圆分成4部分,用5种不同颜色给四部分染色,每部分染一种颜色,相邻部分不能染同一种颜色,则不同的染色方案有

A 120 B 240 C 260 D 280

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2016年“猴”年的到来,某电视台举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,每题只有一个选项是正确的,正确回答问题A可获奖金1千元,正确回答问题B可获奖金2千元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设某参与者在回答问题前,选择每道题的每个选项的机会是等可能的.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金1千元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,分别为的中点,平面平面,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的单调区间.

(2)当时,讨论函数图象的交点个数.

查看答案和解析>>

同步练习册答案