精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

【答案】I见解析;(II) 见解析;III(注:答案不唯一)

【解析】试题分析:(Ⅰ)直接利用定义判断函数 是否是“T函数” 即可

(Ⅱ)设 所以,对于 一定有 即可证明;

(Ⅲ)根据 且使集合 中元素的个数最少,以及新定义即可确定.

试题解析:(I)对于函数,当时,都有

,所以.

所以是“T函数”.

对于函数,当时,

因为,所以.

所以不是“T函数”.

(II)设 .

所以,对于 ,一定有.

因为是“T函数”, ,所以.

,则,不符合题意.

,则,不符合题意.

所以.

III(注:答案不唯一)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.

优秀人数

非优秀人数

总计

甲班

乙班

30

总计

60

(Ⅱ)现已知A,B,C三人获得优秀的概率分别为 ,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附: ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有实根?如果有实根请求出一个长度为的区间使如果没有,请说明理由(注:区间的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数

(Ⅰ)求值;

(Ⅱ)判断并证明该函数在定义域上的单调性;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;

(Ⅳ)设关于的函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,1,2)、B(1,0,﹣1),设D在直线AB上,且 =2 ,设C(λ, +λ,1+λ),若CD⊥AB,则λ的值为( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程.

(Ⅰ)若此方程表示圆,求的取值范围;

(Ⅱ)若(Ⅰ)中的圆与直线相交于 两点,且为坐标原点),求

(Ⅲ)在(Ⅱ)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,为实常数.

(1)求的值;

(2)证明:在区间内单调递增;

(3)若对于区间上的每一个的值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率
(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程 + =1表示焦点在x轴上且离心率小于 的椭圆的概率.

查看答案和解析>>

同步练习册答案