精英家教网 > 高中数学 > 题目详情
已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为E,直线EF截圆x2+y2=1所得弦长为
2

(1)求椭圆C的方程;
(2)过D(-2,0)的直线l与椭圆C交于不同的两点A、B,
AB
=2
AM
.试探究
|MD|
|MA|
的取值范围.
(1)由e=
2
2
,得c=b,直线EF的方程为:x-y=-b,
由题意原点O 到直线EF的距离为
2
2

|b|
2
=
2
2

∴b=1,a2=2,
∴椭圆C的方程是:
x2
2
+y2=1
.…(4分)
(2)①若直线lx轴,则A、B分别是长轴的两个端点,M在原点O处,
|
MD
|=2,|
MA
|=
2

|MD|
|MA|
=
2
.…(6分)
②若直线l与x轴不平行时,
设直线l的方程为:x=my-2,
并设A(x1,y1)、B(x2,y2)、M(x0,y0),
x2+2y2=2
x=my-2

得:(m2+2)y2-4my+2=0,(*)                          …(8分)
∵△=(-4m)2-8(m2+2)>0,
∴m2>2,
由(*)式得y0=
y1+y2
2
=
2m
m2+1

|MD|
|MA|
=
|y0-yD|
|y0-y1|
=
|y0-yD|
1
2
|y1-y2|
=
2|m|
m2+2
2
m2-2
m2+2
=
2
|m|
m2-2
=
2
1-
2
m2

∵m2>2,
1-
2
m2
∈(0,1)

|MD|
|MA|
∈(
2
,+∞)

综上,
|MD|
|MA|
∈[
2
,+∞)
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(
6
,1),O为坐标原点.
(1)求椭圆C的方程;
(2)已知直线l与椭圆C交于不同的两点A、B,若直线l是圆O:x2+y2=
8
3
的一条切线,试证明∠AOB=
π
2
.它的逆命题成立吗?若成立,请给出证明;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(
6
,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且
OA
OB
,判定直线AB与圆O:x2+y2=
8
3
的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
过点M(
6
,1)
,O为坐标原点
(1)求椭圆方程
(2)已知直线l与椭圆C交于不同的两点A,B,若直线l是圆O:x2+y2=
8
3
的一条切线,求证:∠AOB=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(
6
,1)

(1)求椭圆C的方程;
(2)已知与圆x2+y2=
8
3
相切的直线l与椭圆C相交于不同两点A、B,O为坐标原点,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为E,直线EF截圆x2+y2=1所得弦长为
2

(1)求椭圆C的方程;
(2)过D(-2,0)的直线l与椭圆C交于不同的两点A、B,
AB
=2
AM
.试探究
|MD|
|MA|
的取值范围.

查看答案和解析>>

同步练习册答案